7,512 research outputs found

    Boundary migration and disappearance of voids in Alpha-Al2O3 at 2000 deg C

    Get PDF
    A series of photographs taken with Osaka University's high temperature 3MV electron microscope of alpha-A1(z)O(3) at 2000 C is presented. The dynamic study shows grain boundary migration in progress and demonstrates that disappearance of voids is controlled by boundary migration

    Measuring angular diameter distances of strong gravitational lenses

    Full text link
    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/rGM/r) and a mass (GMGM) of the lens, respectively, dividing them gives a physical size (rr) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304z_{\rm L}=0.6304) and RXJ1131−-1231 (zL=0.295z_{\rm L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2\sigma^2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DAD_A per object. This improves to 13% when we measure σ2\sigma^2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2\sigma^2 with 5% precision.Comment: Accepted to JCA

    Oscillations and instabilities of fast and differentially rotating relativistic stars

    Full text link
    We study non-axisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic jj-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the CFS instability, while the critical value of T/∣W∣T/|W| at the mass-shedding limit is raised even more. For softer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFS instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a high degree of differential rotation the absolute value of the critical T/∣W∣T/|W| is below the corresponding value for rigid rotation. We conclude that the parameter space where the CFS instability is able to drive the neutron star unstable is increased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness.Comment: 16 pages, 11 figures; paper accepted for publication in Phys. Rev. D (81.084019

    Kompaneets equation for neutrinos: Application to neutrino heating in supernova explosions

    Full text link
    We derive a `Kompaneets equation' for neutrinos, which describes how the distribution function of neutrinos interacting with matter deviates from a Fermi-Dirac distribution with zero chemical potential. To this end, we expand the collision integral in the Boltzmann equation of neutrinos up to the second order in energy transfer between matter and neutrinos. The distortion of the neutrino distribution function changes the rate at which neutrinos heat matter, as the rate is proportional to the mean square energy of neutrinos, Eν2E_\nu^2. For electron-type neutrinos the enhancement in Eν2E_\nu^2 over its thermal value is given approximately by Eν2/Eν,thermal2=1+0.086(V/0.1)2E_\nu^2/E_{\nu,\rm thermal}^2=1+0.086(V/0.1)^2 where VV is the bulk velocity of nucleons, while for the other neutrino species the enhancement is (1+δv)3(1+\delta_v)^3, where δv=mV2/3kBT\delta_v=mV^2/3k_BT is the kinetic energy of nucleons divided by the thermal energy. This enhancement has a significant implication for supernova explosions, as it would aid neutrino-driven explosions.Comment: 14 pages, 1 figure, matched to published versio

    A General Relativistic study of the neutrino path and calculation of minimum photosphere for different stars

    Full text link
    A detailed general relativistic (GR) calculation of the neutrino path for a general metric describing a rotating star is studied. We have calculated the neutrino path along a plane, with the consideration that the neutrino does not at any time leave the plane. The expression for the minimum photosphere radius (MPR) is obtained and matched with the Schwarzschild limit. The MPR is calculated for the stars with two different equations of state (EOS) each rotating with two different velocities. The results shows that the MPR for the hadronic star is much greater than the quark star and the MPR increases as the rotational velocity of the star decreases. The MPR along the polar plane is larger than that along the equatorial plane.Comment: 13 pages, 5 figures and 1 tabl

    Time-delay Cosmography: Increased Leverage with Angular Diameter Distances

    Full text link
    Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the cosmic microwave background data of Planck improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat Λ\LambdaCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were significantly underestimated, i.e., time-delay systems are more powerful than previously appreciated.Comment: [v2] 18 pages, 12 figures, submitted to JCAP. An error in the fisher matrix for SNIa fixed; conclusions unchange

    Revising the multipole moments of numerical spacetimes, and its consequences

    Full text link
    Identifying the relativistic multipole moments of a spacetime of an astrophysical object that has been constructed numerically is of major interest, both because the multipole moments are intimately related to the internal structure of the object, and because the construction of a suitable analytic metric that mimics a numerical metric should be based on the multipole moments of the latter one, in order to yield a reliable representation. In this note we show that there has been a widespread delusion in the way the multipole moments of a numerical metric are read from the asymptotic expansion of the metric functions. We show how one should read correctly the first few multipole moments (starting from the quadrupole mass-moment), and how these corrected moments improve the efficiency of describing the metric functions with analytic metrics that have already been used in the literature, as well as other consequences of using the correct moments.Comment: article + supplemental materia

    Relativistic stars with purely toroidal magnetic fields

    Full text link
    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The master equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these master equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows ; (1) For the non-rotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass-shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.Comment: 13 figures, 7 tables, submitted to PR

    Improved Method for Detecting Local Discontinuities in CMB data by Finite Differencing

    Full text link
    An unexpected distribution of temperatures in the CMB could be a sign of new physics. In particular, the existence of cosmic defects could be indicated by temperature discontinuities via the Kaiser-Stebbins effect. In this paper, we show how performing finite differences on a CMB map, with the noise regularized in harmonic space, may expose such discontinuities, and we report the results of this process on the 7-year Wilkinson Microwave Anisotropy Probe data.Comment: 5 pages, 6 figures; Text has been edited, in line with the PRD articl

    Relativistic stars in differential rotation: bounds on the dragging rate and on the rotational energy

    Full text link
    For general relativistic equilibrium stellar models (stationary axisymmetric asymptotically flat and convection-free) with differential rotation, it is shown that for a wide class of rotation laws the distribution of angular velocity of the fluid has a sign, say "positive", and then both the dragging rate and the angular momentum density are positive. In addition, the "mean value" (with respect to an intrinsic density) of the dragging rate is shown to be less than the mean value of the fluid angular velocity (in full general, without having to restrict the rotation law, nor the uniformity in sign of the fluid angular velocity); this inequality yields the positivity and an upper bound of the total rotational energy.Comment: 23 pages, no figures, LaTeX. Submitted to J. Math. Phy
    • …
    corecore